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Introduction - System Identification

* Accurate modeling of dynamic systems is a fundamental step in many fields for simulation, prediction, decision
making, fault detection, control design etc.

Building an accurate model using the physical laws governing the system may not be possible in several
situations, due to the fact that these laws are not sufficiently well known or they are too complex, requiring a
computationally expensive model that may be difficult to analyze or to use for design purposes.

Data-driven system identification can be seen as the science of building mathematical models of dynamic
systems, using some prior information and measurement data.
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Introduction - Design of Experiments

» Typically, the identification process consists of the following main steps
* Design of Experiment (DoE);

* Selection of a suitable parametrized model structure
* |dentification of the model parameters

* Evaluation of the model quality through some validation analysis

* The command input signal is the only means that can be used in the DoE phase to influence the information
content of a dataset to be used for identification (identification dataset or training dataset)

* Regardless of the chosen model structure and identification method, the quality of the DoE determines the
accuracy that can be achieved by any identification method.

Aim

e Design an experiment giving the maximum information about the system to be identified
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Introduction - Fault Detection

The classical approach to fault detection

* Identify a model of the system and to design a filter/observer.

* Use the designed filter/observer to generate online a residual signal.
* The faultis detected when residual exceeds a given threshold.

Drawbacks

* Hard problem in the presence of nonlinear and/or uncertain dynamics
e The choice of threshold may be critical

» Effects of modeling error on the estimation error of the filter designed from approximated model is an open
problem.

Set Membership Fault Detection

The approach is based on the direct identification from experimental data of a suitable filter and related

uncertainty bounds. These bounds are used to detect when a change (e.g., a fault) has occurred in the dynamics of
the system of interest.
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Introduction - Contributions

A novel DoE algorithm for input constrained MISO nonlinear dynamic systems based on the set membership
identification.

An innovative approach to fault detection for nonlinear dynamic systems, based on the set membership
identification method.

A Quasi-Local nonlinear set membership identification.
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Introduction - Presentation Qutline

1.  Nonlinear Set Membership Identification
2.  Set Membership Design of Experiments (SM-DoE)

3.  From Design of Experiments to Data-Driven Control Design for Lean NOx Trap (LNT)
Regeneration

4.  Set Membership Fault Detection for Nonlinear Dynamic Systems

5. Discussion and Conclusions
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Nonlinear Set Membership Identification - Introduction

Nonlinear Set Membership Identification features
1. No assumptions on the parametric form of the nonlinear system are needed.

2.  No numerical minimization problems, thus avoiding the issue of local minima and computation time. Since
no optimization problems has to be solved in this approach, it is a suitable tool also for adaptive

identification; making the model more accurate over time by adding new measurements collected online.

(Adaptive Nonlinear Controllers, Design of Experiments , Fault Detection)

3. Allows to accurately define the uncertainty of the identified model in a deterministic manner. Radius of

Information
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Nonlinear Set Membership Identification - Overview of Global and Local approaches [1]

Nonlinear Set Membership Identification — Global

Consider a nonlinear discrete-time dynamic system in regression form

,yt—{—l — fo(wt)

t ¢t 1t ¢ 1 1
w' = [yt .yt Tt gt et

Suppose that the function f, is unknown but a set of noise corrupted data called
measurement dataset generated by the system (1) is available

- : iy T—1

gyt = f(@)+dt=1,..,T D= {ythu'},_|
« Assumption 1 : The noise d* is unknown but bounded. d'| <p,t=1,2,...,T.
* Assumption 2 : The function f, is Lipchitz continues on W. fo e F(I)

forsome I < oo, where
FIO)=Af:1f (w) = f(w)| <T[w—wly,Vw,w e W}
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Nonlinear Set Membership Identification - Overview of Global and Local approaches [1]

Optimal Bounds

f(w) < fo(w) < f(w),YweW

flw)y= sup f(w) fw)= min_ (7 +e+T|jw - @)
fEFSST t=1,...,T
f(w) = inf  f(w). fw) = max G+ —e =T [|lw—a'|)

Nonlinear Set Membership Identification — Local

Identify a model f'(wr) using any desired method, Then
fa(w) = fo(w) — f'(w)
Ayt =gt — fl(@),t =1,..,T

f(w) + £ (w) < fo(w) < f'(w) + Fa(w),YVw e W
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Nonlinear Set Membership Identification - Proposed Quasi-Local Approach

Proposed Quasi-Local Approach

Instead of a global constant bound I' on the gradient of the function, a quasi-local bound is assumed.

Quasi-Local Lipschitz parameters v(w) = sup |[fo(w) — fo(w)]
WEW , WH#w HUJ—iuH
Global Lipschitz constant I' = sup vy(w).
weWw
Optimal bounds Fw) = t:I{linT(%H te+y(D Hw th
- ~t41 ~t
Theorems and proofs [3] i(w) t:nil,é.l.}.{,T(y e —y(w Hw v H

Advantages
* Less conservative uncertainty bounds with respect to the global approach.

* Unlike the local approach, does not require a preliminary estimate of the function.
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Nonlinear Set Membership Identification - Radius of Information [2]

e Error function f,

* Radius of information Rg — worst case model error REY = || fe(-, D)||p

An indication of the model uncertainty

13 /55



POLITECNICO

DI TORINO

Set Membership Design of Experiments




POLITECNICO Introduction  Introduction
DI TORINO Nonlinear Set Membership Ident = State of the art
Set Membership Design of Experiments = Problem definition
Design of Experiments for LNT ~ Static SM-DoE
Set Membership Fault Detection = Dynamic SM-DoE
Conclusion = Example

Set Membership Design of Experiments

Aim

Synthesize an input sequence to apply to the plant to maximize the information extracted from the
collected data and thus minimizing the uncertainty of the estimated model.
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Set Membership Design of Experiments - State of the art

Static Systems

* Model-free DoE (Space-filling designs) Random, LHC
()
. “,“:0'0‘ (A N,'po v,'
* Model-based DoE D-Optimal S,
5 Y o WY e s W,
)
(a) Random (b) LHC (¢) D-optimal
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Set Membership Design of Experiments - State of the art

Dynamic Systems

* Parameterize a pre-defined excitation signal, and then optimize the signal parameters called the design points,
according to different criteria (Random, LHC, D-Optimal, ... ).

* For example, a widely applied excitation signal in industrial identification tasks is the amplitude modulated
pseudo random binary signal (APRBS).

a

APRBS

as
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Set Membership Design of Experiments

Introduction

State of the art
Problem definition
Static SM-DoE
Dynamic SM-DokE
Example

- State of the art

Dynamic Systems

Experiment Duration: 560 seconds
Sampling time: 0.5 seconds
Nonlinear Dynamic System
( )
d
Z—l
t
Uq,u U —>y
vz | f . g yt+l >
Uy X X
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Dynamic Svstem:

+ y!

Static System:

x = f(u) aly'.z")
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Set Membership Design of Experiments - State of the art

* Simple and adequate to capture steady state behavior.

Drawbacks
* Provide no information about the sequence of design points.
 Theydon’t take into account the dynamics of the system.

e Capturing the nonlinear dynamic behavior of the system in the whole regressor domain is a
heuristic/arbitrary process.

* No guarantee on the accuracy of the model derived from these methods.

Challenge

The exploration of the regressor domain.
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Set Membership Design of Experiments

Knowing which are the regions of the regressor space where the model is most uncertain is a key element to
design a proper DoE algorithm.

The DoE algorithm has to be able to generate an input sequence such that the system moves toward those
uncertain regions of the regressor space in order to take new measurements.

* Proposed Approach

In the set membership framework, the model uncertainty is measured by the radius of information, calculated in
some selected norm. We propose a novel set membership design of experiments (SM-DoE) approach for
nonlinear systems, aimed at minimizing the radius of information.

The algorithm uses a novel adaptive set membership predictive controller (SMPC) that is able to move the system
toward most uncertain regions of the regressor space.
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Set Membership Design of Experiments

Problem definition

Design an input sequence UlT = {ut}{_l that, applied to the nonlinear system yields a minimal radius of
information
Rz = fe(-,D)

[

* T :
U7 =argmin |[fe( D),

1
subject to gyt = f(w") +d', t=1,...,T -1
D= {7+ '}, )
* Challenges

« f,and d?t are not known

 The DoE algorithm has to be sequential; at each time step, on the basis of the current and past

measured data, the algorithm individuates what is the next point of the regressor domain that the
system has to visit.

It may not be possible to take measurements at a desired point w , since the function f, is a dynamic
system and the regressor w depends on the state of the system.
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Set Membership Design of Experiments

Consider a static nonlinear system of the form
2t = fo(wh), w' =ut e W.

Algorithm 3 Static Set-Membership Dok
1

(1) Choose the initial regressor w' (e.g., the center of
the regressor domain W):
Measure 2! = f,(w!);

Define the measurement dataset D = {?1. w! }

System trajectory depends only on the current input
and not on the past input output values.

—
(SN
—

It is possible to obtain a measurement of the function While ¢t < T', solve the optimization problem

fo at any desired point of the regressor domain W ’ :
wyy = arg max f, (w, D);

’ weW (‘)5)
Theorem 1: w! € w,

Let T be the number of steps in Algorithm 3 and

R4(t) be the radius of information computed at time
t. Then, there exists a T such that R;(t) < u , Vt =
T.

Proof: [3]

Measure 2* = f,(w'):
Add Z* and w' to the dataset D := DU {Z',w'};
t:=t+1.

The vector w' is any point in wj,; and f! is the error

function (18) computed at time instant ¢.
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Set Membership Design of Experiments - Set Membership Model Predictive Control

Now suppose that we have a dynamic system. unlike the static case, it is not possible to evaluate the function at
any desired point wr, Since the regressor depends not only on the current input but also on past input and
output values.

yt—i-l — fo(wt)

t ot t—my+l ¢
w' =y .yt T,

.ut—nu—l—l] (1)

The idea here is to use an algorithm similar to Static SM-DoE to generate desired reference points w?’ in
combination with an MPC controller making the system visit the desired point w" .

The MPC approach that we propose is novel and is called set membership model predictive control (SMPC)

Other set membership predictive control laws assume that sufficient set of data is available.
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Set Membership Design of Experiments - Set Membership Model Predictive Control

State space representation of (1) pt = [yt gttt gt et

t

w' = [z} :U’Eny) u'

xf”y"'l) xf”y"'nu)]

xt—i—l — fo(act,ut)
t t ]

fo(xtau’t) - [fo(wt) 513'1(51) xfny—l) u ... x(ny+nu_1)

xt+1 _ fo(xt,ut) _ fc(xt,ut) + [et 0 .. O]
e < fe(w!) SRFE Vwew )
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Set Membership Design of Experiments - Set Membership Model Predictive Control

The set of all possible state values at time t + k that originate from the generic “initial” state x¢ at time ¢t by
applying the input sequence Ué‘ to the system, is defined as:

S, Uf) = {7+
B = L@ W) [0 L 0],

7| < fo(@7),Vn € [0,k —1] }.

The size of the set § is an indication of the uncertainty of a trajectory

The state of the system at time t + k obtained starting from a generic “initial” state x* and applying the input
sequence UF is defined as

Sy(xt, UF) =zt .

gL = f (P W) Yn € [0,k — 1.

80<xt7 Utk) S S(xtv Utk>
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Set Membership Design of Experiments - Set Membership Predictive Controller

Suppose we want to take a measurement at w” or its equivalent (x",u"). Where the uncertainty amplitude is
f. (™). We want to derive the system state xt to a neighborhood of x”, called reference set X,

Reference set X, ={z:T|lx—2"|,+p < Afe(w"), A € (0,1]}

When the state is inside X, i.e. xt € X, by applying u” as input to the system and adding the new measurement
to the dataset D, the uncertainty f, («") will be reduced by at least a factor of A.

Assumption 3: (controllability) Vot 2" e X, 3K < oo, HUt’“ eU:
So(zt, UF) = 2" for k < K.

Assumption 4: (boundedness) Vut eUVtE>0: a2t e X
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Set Membership Design of Experiments - Set Membership Predictive Controller

The optimization problem to be solved in the SMPC approach is:
J*(zt, 2",4) = max J (2, 2", U})
Ui
subject to U} € U

z" € S(at,U}) (3)

J(z', 2", Uf) = > diam(S(z", U}"))

Where: i =min {i € N:4 < K,3U; such that 2" € S(z*,Uy)}

The controller is implemented according to receding horizon strategy, the control law indicated as ut
K (xt,x") , means solving (3) and applying the first element of the maximizer U;* as control action u
adding new measurement to the dataset D .

tand
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Set Membership Design of Experiments - Set Membership Predictive Controller

Theorem 2:

Let Assumptions 3 and 4 hold. Starting from any initial state xt € X, the state of the system controlled by the
feedback law So(xt, iKtk), will visit a point inside reference set y,- in finite time. That is,

Val,a" € X, IK < 0o : S,(at, KF) € &, for some k < K.

Proof: [3]
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Set Membership Design of Experiments

Corollary: Algorithm 4 Dynamic Set Membership DoE
For any desired radius of information Ry = 4, (1) Select a reference regressor w” to be visited which
there exist a finite number of steps T Algorithm 4 has a high uncertainty and its equivalent pseudo-
suchthat Ry(t) < R4, VE=T. state " is close to the estimated state:
w', " = arg  min (”.’F'+l - .1"'| 5+ . —).
wreW.zreX 2T T (w")
(57)

(2) Compute &, according to (39) with a suitable A.
(3) Apply the following criterion:

lf .'l\,l+| € Xr
then u'=u"€w"

else u'=K(z",z").

(4) Evaluate 7't! = f, (@) = f,(z', u?).

(5) Add 7" and @' to the dataset D := DU{y'*!, @'}.
(6) Update v and I' according to Algorithm 2.

(7) Set t:=t+ 1 and go to step (1).
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Set Membership Design of Experiments

Example: Relevant to the behavior of a combustion engine [4]

y=g(y,x) =2x/(2.4cos(10z + 4) — 0.5y + 3.3).

r = f(ur,us) = cos(94/u? +u3 +2) + 0.5cos(11uy + 2) + 15((ug — 0.4)% + (uy — 0.4)%)2.

Static Svstem: Dvnamic Svstem:
x= f(u) v =y 2)

Nonlinear Dynamic System

( )
L
SO0
-1 d w "‘,":'l":'::‘:';:":
Z iR NI ,‘l‘f,'!,lllj,’t,’;,',
5 DR N .
t
Uq, Uy U —>y
SM-DoE At 'Y f . g yt+l > 4
Uy X X ~ o ) 1

- J
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Set Membership Design of Experiments

Static System: Dynamic System:
x= f(u) vy =gl 2)

Experiment Duration: 560 seconds

Sampling time: 0.5 seconds

e Three different DoE methods are compared
(Random, LHC, D-Optimal)

* For each one, 10 different APRBS signals are constructed R
with random sequence of the design points. .
-0.5
Identified Model Accuracy (Neural Network model) Ty e
O ASM—pogw{ul iy
Inputs FIT RMSE L T TR
Random 0.69 + 0.03 0.149 =+ 0.017 e e
LHC 0.68 & 0.04 0.155 + 0.022 ¢ of gl
D-Optimal 0.76 £ 0.01 0.115 4+ 0.008 L
SM-DoE 0.91 0.043 L T
>17; '05‘ 0 : 0.5 1
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Design of Experiments for LNT - Introduction

e Diesel engines:
* High efficiency
e Higher emissions compared to SI Engines

e NOx emission reduction:
e LNT
e SCR

* Lean NOx Trap (LNT):

* Lean NOx Trap is an after-treatment technology that is used to reduce the NOx emissions of lean burn
diesel engines

e The basic concept of LNT is to store NOx during lean conditions and release the stored NOx in rich
conditions to react with available reductants to reduce NOx emissions.
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Design of Experiments for LNT - Introduction

* Two main operating conditions:

1. Storage or Adsorption phase
* Engineisin lean condition
*  NOxis Stored Chemically in LNT
2. Regeneration or Purge phase
*  Engineisin rich condition (extra fuel is injected)
* NOxisreleased from the catalyst then react with CO, HC and H2 to make nitrogen.
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Design of Experiments for LNT - LNT Regeneration

In order to regenerate the LNT, extra fuel is injected in the cylinder to create a rich condition, and this causes a
higher fuel consumption. The goal is to determine the best timing for regeneration in order to reduce the
fuel consumption and the NOx emissions.

* Regeneration Control Objective
1. Minimize Fuel Penalty
2. Keep NOx emissions under the regulation level

* Problems:

1. Deriving an accurate model, able to describe the highly nonlinear dynamics of an LNT
2. Designing an effective LNT control strategy using this model
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Design of Experiments for LNT - LNT Regeneration

Data-driven model predictive control (D? — MPC) for LNT Regeneration
* Does not require a physical model of the plant
* Based on a prediction model, directly identified from experimental data.

* The regeneration timing is computed through an on-line optimization algorithm, which uses the identified
model to predict the the amount of NOx stored in the LNT.

First step is to identify a model for the LNT

Apply the Set Membership DoE algorithm (SM-DoE) in order to minimize the experimental effort and acquire a
rich dataset for identification by capturing the nonlinear behavior of the LNT in the whole working domain of the
system.
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Design of Experiments for LNT - AMEsim model
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Design of Experiments for LNT - Simulation Setup
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* Uy Engine Speed

* Ujpaq . Loadcommand to ECU

Regeneration Command - binary signal that changes the combustion mode of the engine to rich
mode with ¢=1.2
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t+1 L .
g = f(y",u") Engine Maps

u = ['lere,,np Ugp Uphpa “‘7hNOI] Teng — fT(‘/;nga Lcmd7 Cmode)
B NO, stored quantity ¢ = f¢(Vengs Teng, Cmode)
Upemp :  LNT wall temperature 1pG = firp(Vengs Teng, Crmode)
Ug : fuel-air equivalence ratio N0, = finvo, (Vengs Tengs Cmode)
Ui - €xhaust gas flow rate

Uy, - €xhaust NO, flow rate

DoE Plant
( ) ( )
d
> ¢ Engine Speed StoredQuantity
11— Dok i Engine AMESlm Temperature
» - —» MM&c > Load Command ¢ 7
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Two Neural network models were identified using the set of data generated by SM-DoE algorithm and data
generated by APRBS-Random strategy.

o . ~+1 _ gyt t t t ¢
The model works in simulation Y = fy, UTemp » Ugp » Wpppe o UmNow)

Validation set: 10 set of data during NEDC driving cycle with random initial LNT temperature and random initial
stored quantity.

Inputs Duration (Samples) RMSE FIT R Rz
APRBS-Random 20000 - 2.8 hours 0.11 0.65 1.03 022
SM-DoE 3000 - 25 minutes 0.03 0.90 0.36 0.07

— 25 T T T T T

=0

Z 2t R

.:%

5 1.5 i

<

T o1t ]

f 0.5 F ——— Measurements y |

o —— Model i

Z 0 | | | | |
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Time (seconds)
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Design of Experiments for LNT - Data-Driven MPC for LNT
Control Objectives: Algorithm 5 LNT Regeneration Timing Control
* Minimize fuel penalty. 1: Compute 1"‘",.',T_,,’" : I,’,ﬁl‘ for k& € [0, K] according to
* Maximize amount of NOx removed from the trap (‘4)' o
in each regeneration. 2: Solve optimization problem:
* 1) =arg min J (1,1 58
b — 0 t<ty,t>ty (1 2) 28 0<t) <ta<kas (1 2) (’ )
1 6 <t<ty
by computing ¢!**, m'ﬁf lizf\f(k)"r according to (5)
gttt _ gttte that is a function of 1':.',#’. T(',‘,L,f‘ t; and t2. And, by
t simulating the LNT model starting from 7t to yt+*.
2 ¢ i . s e
m 3. if J (t7.t5) < Threshold then
Fp(fl~t2) P Z ( :‘eg - (/)fang) e 4: i = flgl ok
t=t4 AFRstoich g
5. else
6: =1
FP(tq,t B 2
J (tlatQ) =J (t7t1> tZ) - At—l—tl( 1,"t%|—>t2 . fs e‘nd if
Y -y 8: Sett =t + t; and go to step (1).
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Design of Experiments for LNT - Simulation Results

NEDC Driving Cycle
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- Simulation Results
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Design of Experiments for LNT

Conclusion

* Avoid complex modeling of the LNT dynamics.
* Very low experimental effort.

e Very efficient regenerations.

* The DoE algorithm could also be used for engine modeling and calibration.
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Set Membership Fault Detection

Based on direct identification from experiment data of a suitable filter and related uncertainty bounds.

The bounds are used to detect when a change (e.g., a fault) has occurred in the dynamics of the system.

yt - fo (xt) + d'
T t—1

identified from data.

t—n
sy Y Y, U g

t—1 ., ut—nu)

Avoids the utilization of complex modeling and filter design procedures since the filter/observer is directly

* Does not require to choose any threshold (as typically done in many “classical” techniques).

* Not affected by under modelling problem:s.
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Set Membership Fault Detection

» Offline operations
1. Define the measurement dataset D.

2. Estimate the noise bound u according to Algorithm 1.
3. In the case of the local approach, estimate a preliminary approximation f,.

4. Estimate the Lipschitz parameters according to Algorithm 2. T'; #(x) ; 74 ().
* Online operations
1. At each time step:
If gt > f&) + €t or yt < f&H -t
Then Fault =1
Else Fault =0

2. In the case of the adaptive algorithm, update the set membership model according to Algorithm 5 if no
fault has accrued in the system and the system is not recovering from a fault.
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Set Membership Fault Detection
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Set Membership Fault Detection
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Set Membership Fault Detection

Turn off the motor as soon as it detects a fault.
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Conclusion

The main goal was to develop a general systematic methodology for design of experiment for nonlinear systems
that can be applied to a wide range of applications.

e Quasi-Local Nonlinear Set Membership Identification
* Less conservative bounds compared to global approach.
* Doesn't need any preliminary estimate of the function.
* Can be adaptive (useful for data-driven adaptive controllers, fault detection,...)
* Set Membership Design of Experiments (SM-DoE)
* A novel DoE algorithm MISO nonlinear systems.
* A novel SMPC controller to move the system toward most uncertain regions of the domain.

* Guarantee any desired worst-case model error larger than the measurement error in finite time
experiment.

* Case study in the automotive field to show the effectiveness of the approach and its potential in view of
real-world applications where experiments are expensive and/or a very accurate model is desired.
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Conclusion

* Set Membership Fault Detection — Quasi Local approach
* Fast and accurate fault detection
* |t can be Adaptive (If the dynamics of the plant changes over time)

The fault detection algorithm can be integrated into the DoE algorithm in order to have an understanding of the
normal behavior of the system

Limitations:

* In set membership approach there is the need of storing measurement data on the memory which could be
problematic for embedded systems.

e Computation of the set § that is required for the SMPC is difficult which makes it computationally expensive

and hard to implement in fast dynamic systems. (a different cost function for the controller is also proposed
which is easy to compute but it doesn’t have the theoretical guarantees).
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Karimshoushtari, M., Novara, C. and Spagnolo L., 2018 "Set membership fault detection for nonlinear
dynamic systems” Book chapter IET.
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